Math 6261

Review.

Thy (CLT) Let $\left(X_{n}\right)$ be an i.i.d. sequence of r.v.'s with

$$
E\left(X_{n}\right)=0 \text { and } \operatorname{Var}\left(X_{n}\right)=\sigma^{2} \text {. }
$$

Write $S_{n}=X_{1}+\cdots+X_{n}$. Then for any $x \in \mathbb{R}$,

$$
P\left(\frac{S_{n}}{\sqrt{n} \sigma^{\delta}} \leqslant x\right) \rightarrow \Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y
$$

as $n \rightarrow \infty$.
(standard normal distribution)

Below we present a generalized version of the CLT, which can be proved by using a similar argument.

Thy (The Lindeberg-Feller Thy)
suppose for each n, the rU's

$$
X_{n, 1}, X_{n, 2}, \cdots, X_{n, r_{n}}
$$

are independent, with

$$
E\left(X_{n, k}\right)=0, \quad \sigma_{n, k}^{2}=E\left(X_{n, k}^{2}\right) \quad \text { and } s_{n}^{2}=\sum_{k=1}^{r_{n}} \sigma_{n, k}^{2} .
$$

Suppose for each $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{r_{n}} \frac{1}{s_{n}^{2}} \int_{\left|x_{n, k}\right|>\varepsilon s_{n}} x_{n, k}^{2} d p=0
$$

Then

$$
\frac{X_{n, 1}+\cdots+X_{n, r_{n}}}{S_{n}} \xrightarrow{w} Z,
$$

where Z has the standard normal distribution.

Corollary. Let X_{1}, X_{2}, \cdots, be independent r.u.'s. Suppose that
$E\left(X_{n}\right)=0$ and $\left|X_{n}\right| \leqslant C$ uniformly.
If $S_{n}^{2}=\sum_{k=1}^{n} \operatorname{Var}\left(X_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, then
Then

$$
\frac{X_{1}+\cdots+X_{n}}{s_{n}} \xrightarrow{w} \bar{Z},
$$

where Z has the standard normal distribution.
§4. Random walks.
§4.1 Sums of independent r.U.'s.
Let X_{1}, X_{2}, \cdots, be independent of r.v.'s. Let

$$
S_{n}=X_{1}+\cdots+X_{n} .
$$

We first study whether S_{n} converges.
Define $\quad A=\left\{\omega: \quad \sum_{n=1}^{\infty} X_{n}(\omega)\right.$ converges $\}$.

Notice that for each m, the values of $X_{1}(\omega), \cdots, X_{m-1}(\omega)$ are not relevant to the question of whether $\omega \in A$. Move precisely, for given $m \in \mathbb{N}$,

$$
A=\left\{\omega: \quad \sum_{k=m}^{\infty} X_{k}(\omega) \text { converges }\right\} .
$$

Notice that
$\omega \in A \Leftrightarrow \forall l \in \mathbb{N}, \exists N \geq m$ such that for each $p \geq 0$

$$
\left|X_{N}(w)+\cdots+X_{N+p}(w)\right|<\frac{1}{l} .
$$

Hence

$$
A=\bigcap_{l=1}^{\infty} \bigcup_{N=m}^{\infty} \bigcap_{p=0}^{\infty}\left\{\omega:\left|X_{N}(\omega)+\cdots+X_{N+p}(\omega)\right|<\frac{1}{l}\right\}
$$

It follows that

$$
A \in \sigma\left(x_{m}, x_{m+1}, \cdots\right)
$$

Hence $\quad A \in \bigcap_{m=1}^{\infty} \sigma\left(x_{m}, X_{m+1}, \cdots\right)=: \tilde{J}$.
We call \mathcal{J} the tail σ-field associated with X_{1}, X_{2}, \cdots.

The 4.1 (Kolmogrov's Zero-One |aw).
Suppose that X_{1}, X_{2}, \cdots, are independent and that

$$
A \in \sigma=\bigcap_{n=1}^{\infty} \sigma\left(x_{n}, x_{n+1}, \cdots\right) .
$$

Then either $P(A)=0$ or $P(A)=1$.
Pf. We will show that A is independent of itself. Hence

$$
P(A \cap A)=P(A) P(A) \text {, ie. } P(A)=P(A)^{2} \text {, }
$$

and hence $P(A)=0$ or 1 .
We prove this in two steps.
Step 1: If $B \in \sigma\left(X_{1}, X_{2}, \cdots, X_{k}\right)$ and $C \in \sigma\left(X_{k+1}, X_{k+2}, \cdots\right)$, then B and C are independent.
Clearly, $\sigma\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ and $\bigcup_{j=1}^{\infty} \sigma\left(x_{k+1}, \cdots, x_{k+j}\right)$ are independent. Since the second one is a π-system, so

$$
\sigma\left(x_{1}, X_{2}, \cdots, X_{k}\right) \text { and } \sigma\left(\bigcup_{j=1}^{\infty} \sigma\left(X_{k+1}, \cdots, X_{k+j}\right)\right)=\sigma\left(X_{k+1}, \cdots\right)
$$ are independent.

Step 2: If $B \in \sigma\left(x_{1}, x_{2}, \cdots\right)$ and $C \in \mathcal{J}$, then B and C are inclependent.
For any k, sine $\sigma \subset \sigma\left(X_{k+1}, X_{k+2}, \cdots\right)$ so τ and $\sigma\left(x_{1}, \cdots, x_{k}\right)$ are independent. It follows that σ and $\bigcup_{k=1}^{\infty} \sigma\left(X_{1}, \cdots, X_{k}\right)$ are independent.
Therefore σ and $\sigma\left(\bigcup_{k=1}^{\infty} \sigma\left(x_{1}, \cdots, x_{k}\right)\right)=\sigma\left(x_{1}, x_{2}, \cdots\right)$ are independent.

Let $A \in S$. Sin $\sigma \subset \sigma\left(X_{1}, \cdots, X_{k}, \cdots\right)$, by Step 2, A is independent of itself.

By the Kolmogrou's Zero-one law, if X_{1}, X_{2}, \cdots are independent, then the set where $\sum_{n=1}^{\infty} X_{n}(\omega)$ converges has probability either - or 1.

Below we discuss how to determine which of 0 and 1 is the prob. of the set. First we prove two maximal inequalities.

Prop 4.2. Suppose $X_{1}, X_{2}, \cdots, X_{n}$ are independent r.U.'s with mean 0 and finite variance. For $\alpha>0$,

$$
P\left(\max _{k \leqslant k}\left|S_{k}\right| \geqslant \alpha\right) \leqslant \frac{1}{\alpha^{2}} \operatorname{Var}\left(S_{n}\right) \text {. }
$$

Remark: By Chebysheu inequality, $P\left(\left|S_{n}\right| \geqslant \alpha\right) \leqslant \frac{1}{\alpha^{2}} \operatorname{Var}\left(S_{n}\right)$. Pf of Prop 4.2.

Let $A_{k}=\left\{\omega:\left|S_{k}(\omega)\right| \geqslant \alpha\right.$ and $\left|S_{j}(\omega)\right|<\alpha$ for $\left.j<k\right\}, k=1,2, \cdots$ Then A_{k} are disjoint.

Hence

$$
\begin{aligned}
E\left(S_{n}^{2}\right) & \geqslant \sum_{k=1}^{n} \int_{A_{k}} S_{n}^{2} d P \\
& =\sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2}+2 S_{k}\left(S_{n}-S_{k}\right)+\left(S_{n}-S_{k}\right)^{2} d P \\
& \geqslant \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2}+2 S_{k}\left(S_{n}-S_{k}\right) d P
\end{aligned}
$$

Since A_{k} and S_{k} are in $\sigma\left(X_{1}, \cdots, X_{k}\right)$ and $S_{n}-S_{k}$ in $\sigma\left(X_{k+1}, \cdots, X_{n}\right)$

$$
\begin{aligned}
\int_{A_{k}} 2 S_{k}\left(S_{n}-S_{k}\right) d p & =2 \int \mathbb{1}_{A_{k}} S_{k}\left(S_{n}-S_{k}\right) d p \\
& =2\left(\int \mathbb{1}_{A_{k}} S_{k} d p\right)(\underbrace{\int S_{n}-S_{k} d p}_{=0}) \\
& =0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
E\left(S_{n}^{2}\right) & \geqslant \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2} d P \\
& \geqslant \alpha^{2} \sum_{k=1}^{n} P\left(A_{k}\right) \\
& =\alpha^{2} \cdot P\left(\max _{1 \leqslant k \leqslant n}\left|S_{k}\right| \geqslant \alpha\right) .
\end{aligned}
$$

Prop 4.3. Let X_{1}, \cdots, X_{n} be independent. Then for $\alpha>0$,

$$
P\left(\max _{1 \leqslant k \leqslant n}\left|S_{k}\right|>3 \alpha\right) \leqslant 3 \max _{1 \leqslant k \leqslant n} P\left(\left|S_{k}\right| \geqslant \alpha\right) .
$$

Pf. Let $B_{k}=\left\{\omega: \quad\left|S_{k}(\omega)\right|>3 \alpha\right.$ and $\left|S_{j}(\omega)\right|<3 \alpha$ for $\left.j<k\right\}$ Then B_{1}, \cdots, B_{n} are disjoint with $\bigcup_{k=1}^{n} B_{k}=\left(\max _{1 \leqslant k \leqslant n}\left|s_{k}\right|>3 \alpha\right)$.

$$
\begin{aligned}
& P\left(\max _{\mid \leqslant k \leqslant n}\left|S_{k}\right|>3 \alpha\right) \\
& \leqslant P\left(\left|S_{n}\right| \geqslant \alpha\right)+\sum_{k=1}^{n-1} P\left(B_{k} \cap\left\{\left|S_{n}\right|<\alpha\right\}\right) \\
& \leqslant P\left(\left|S_{n}\right| \geqslant \alpha\right)+\sum_{k=1}^{n-1} P\left(B_{k} \cap\left\{\left|S_{n}-S_{k}\right|>2 \alpha\right\}\right) \\
& =P\left(\left|S_{n}\right| \geqslant \alpha\right)+\sum_{k=1}^{n-1} P\left(B_{k}\right) P\left(\left|S_{n}-S_{k}\right|>2 \alpha\right) \\
& \leqslant P\left(\left|S_{n}\right| \geqslant \alpha\right)+\max _{1 \leqslant k \leqslant n-1} P\left(\left|S_{n}-S_{k}\right| \geqslant 2 \alpha\right) \\
& \leqslant P\left(\left|S_{n}\right| \geqslant \alpha\right)+\max _{1 \leqslant k \leqslant n-1}\left(P\left(\left|S_{n}\right| \geqslant \alpha\right)+P\left(\left|S_{k}\right| \geqslant \alpha\right)\right) \\
& \leqslant 3 \max _{1 \leqslant k \leqslant n} P\left(\left|S_{k}\right| \geqslant \alpha\right) .
\end{aligned}
$$

Now we are ready to prove

The 4.4 Suppose that X_{1}, x_{2}, \cdots, are independent with mean 0 .
If $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}\right)<\infty$, then $\sum_{n=1}^{\infty} X_{n}$ converges with prob. 1 .

Pf. By Prop 4.2.

$$
\begin{aligned}
& P\left(\max _{1 \leqslant k \leqslant r}\left|S_{n+k}-S_{n}\right|>\varepsilon\right) \\
& \leqslant \frac{1}{\varepsilon^{2}} \operatorname{Var}\left(S_{n+r}-S_{n}\right) \\
&=\frac{1}{\varepsilon^{2}} \sum_{k=1}^{r} \operatorname{Var}\left(X_{n+k}\right) . \\
& \leqslant \frac{1}{\varepsilon^{2}} \sum_{k=1}^{\infty} \operatorname{Var}\left(X_{n+k}\right)
\end{aligned}
$$

Letting $r \rightarrow \infty$ gives

$$
P\left(\sup _{k \geq 1}\left|S_{n+k}-S_{n}\right|>\varepsilon\right) \leqslant \frac{1}{\varepsilon^{2}} \sum_{k=1}^{\infty} \operatorname{Var}\left(X_{n+k}\right)
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\sup _{k \geqslant 1}\left|S_{n t k}-S_{n}\right|>\varepsilon\right)=0 . \tag{*}
\end{equation*}
$$

Let $E(n, \varepsilon)$ denote the set where $\sup _{k_{1 j} \geqslant n}\left|S_{k}-S_{j}\right|>2 \varepsilon$ and $E(\Sigma)=\bigcap_{n=1}^{\infty} E(n, \Sigma)$.
Then $\quad E(n, \varepsilon) \downarrow E(\varepsilon)$.
Since $\left(\sup _{k \geqslant 1}\left|S_{n+k}-S_{n}\right|>\varepsilon\right) \supset E(n, \varepsilon) \supset E(\varepsilon)$, by (*), $P(E(\varepsilon))=0$.

Notice that $\quad\left(S_{n}\right.$ diverges $) \subset \bigcup_{\varepsilon \in \mathbb{Q}_{+}} E(\varepsilon)$,
So $\quad P\left(S_{n}\right.$ diverges $)=0$.

Example 4.5. Consider the random series $\sum_{n=1}^{\infty} \pm \frac{1}{n}$, where the signs are chosen on the toss of a coin. Then the series converges with prob. 1.

