$$\begin{array}{c} \mbox{Math } 6261 \qquad 2023-03-17 \\ \hline \mbox{Review}. \\ \hline \mbox{Thm (CLT)} \quad Let (X_n) be an i.i.d. sequence of r.v.'s with \\ \hline \mbox{E}(X_n) = 0 \quad and \quad Var(X_n) = \sigma^2. \\ \hline \mbox{Write} \quad S_n = X_n + \dots + X_n. \quad Then \quad for any $x \in \mathbb{R}, \\ \hline \mbox{P}(\frac{S_n}{\sqrt{n-\sigma}} \le x) \rightarrow \tilde{\Phi}(x_1) = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} e^{-y^2 A} \frac{1}{2} \\ \hline \mbox{as } n \Rightarrow \infty. \qquad (standard normal distribution) \\ \hline \mbox{Below we present a generalized version of the GLT, which can be proved by using a similar argument. \\ \hline \mbox{Thm (The Lindeberg-Feller Thm)} \\ \mbox{suppose for each } n, \quad the r.v's \\ \hline \mbox{Xns.}, \quad X_{n,s}, \quad \cdots, \quad X_{n,rh} \\ \hline \mbox{are independent, with} \\ \hline \mbox{E}(X_{n,k}) = 0, \quad \sigma_{n,k}^2 = E(X_{n,k}) \quad and \quad s_n^2 = \sum_{k=1}^{r_n} \frac{\sigma_{n,k}^2}{\sigma_{n,k}}. \\ \hline \mbox{Suppose for each } \Sigma > 0 \\ \hline \mbox{lim} n \quad \sum_{k=1}^{r_n} \frac{1}{s_n} \int_{|X_{n,k}| > E S_n} X_{n,k}^2 dP = 0 \\ \hline \end{tabular}$$$

Then
$$\frac{\chi_{n,1} + \dots + \chi_{n,r_n}}{S_n} \xrightarrow{W} Z$$

where Z has the standard normal distribution.

Corollary. Let
$$X_1, X_2, \cdots$$
, be independent r.u.'s. Suppose that
 $E(X_n) = o$ and $|X_n| \leq C$ uniformly.
If $S_n^2 = \sum_{k=1}^n V_{ar}(X_n) \rightarrow \infty$ as $n \rightarrow \infty$, then
Then

Let
$$X_1, X_2, \dots$$
, be independent of r.u.'s. Let
 $S_n = X_1 + \dots + X_n$.

We first study whether
$$S_n$$
 converges.
Define $A = \left\{ \omega : \sum_{n=1}^{\infty} X_n(\omega) \text{ converges} \right\}.$

Notice that for each m, the Values of
$$X_{1}(\omega), ..., X_{m-1}(\omega)$$

are not relevant to the question of whether we A. More precisely,
for given meth
 $A = \{ \omega : \sum_{k=m}^{\infty} X_{k}(\omega) \text{ converges } \}.$
Notice that
 $\omega \in A \Leftrightarrow \forall R \in \mathbb{N}, \exists N \ge m \text{ such that for each } p \ge 0$
 $[X_{N}(\omega) + \dots + X_{N+p}(\omega) | < \frac{1}{2} \cdot$
Hence
 $A = \bigcap_{l=1}^{\infty} \bigcup_{N=m}^{\infty} \bigcap_{p=0}^{\infty} \{ \omega : |X_{N}(\omega) + \dots + X_{N+p}(\omega) | < \frac{1}{2} \}$
It follows that
 $A \in \mathcal{O}(X_{m}, X_{m+1}, \dots) =: J.$
Hence
 $A \in \prod_{m=1}^{\infty} \mathcal{O}(X_{m}, X_{m+1}, \dots) =: J.$
We call J the tail σ -field associated with X_{1}, X_{2}, \dots .
Thm 4.1 (Kolonogrou's Zero-One law).
Suppose that X_{1}, X_{2}, \dots are independent and that
 $A \in \mathcal{T} = \bigcap_{n=1}^{\infty} \mathcal{O}(X_{n}, X_{m+1}, \dots).$

Then either
$$P(A)=0$$
 or $P(A)=1$.
Pf. We will show that A is independent of itself. Hence
 $P(A \cap A) = P(A) P(A)$, i.e. $P(A) = P(A)^2$,
and hence $P(A)=0$ or 1.
We prove this in two steps.
Step1: If $B \in \mathcal{O}(X_1, X_2, \dots, X_R)$ and $C \in \mathcal{O}(X_{RH1}, X_{R+2}, \dots)$,
then B and C are independent.
Clearly, $\mathcal{O}(X_1, X_2, \dots, X_R)$ and $\bigcup_{j=1}^{\infty} \mathcal{O}(X_{RH1}, \dots, X_{R+j})$
are independent. Since the second one is a T-system, so
 $\mathcal{O}(X_1, X_2, \dots, X_R)$ and $\mathcal{O}(\bigcup_{j=1}^{\infty} \mathcal{O}(X_{RH1}, \dots, X_{R+j})) = \mathcal{O}(X_{RH1}, \dots)$
are independent.
Step2: If $B \in \mathcal{O}(X_1, X_2, \dots)$ and $C \in \mathcal{T}$, then B and C are
independent.
For any R, Since $\mathcal{T} = \mathcal{O}(X_{R+1}, X_{R+2}, \dots)$ so
 \mathcal{T} and $\mathcal{O}(X_1, \dots, X_R)$ are independent. It follows that
 \mathcal{T} and $\bigcup_{R=1}^{\infty} \mathcal{O}(X_1, \dots, X_R) = \mathcal{O}(X_1, X_2, \dots)$ are
independent.

Let
$$A \in \mathbb{T}$$
. Since $\mathbb{T} = \mathfrak{S}(X_1, \cdots, X_{R_1}, \cdots)$, by $Step^{\perp}$,
 A is independent of itself.
By the Kolmogrou's Zero-One law, if X_1, X_2, \cdots are independent,
thun the set where $\sum_{n=1}^{10} X_n(\omega)$ converges has probability either
 \circ or 1.
Below we discuss how to determine which of \circ and 1 is the
prob. of the set. First we prove two maximal inequalities.
Prop 4.2. Suppose X_1, X_2, \cdots, X_n are independent r.u.'s with
mean \circ and finite Variance. For $d \ge 0$,
 $P(\max_{i \le R \le n} |S_R| \ge d) \le \frac{1}{d^2} \operatorname{Var}(S_n)$.
Remark: By Chebyshev inequality, $P(-|S_n| \ge d) \le \frac{1}{d^2} \operatorname{Var}(S_n)$.
Pf of Prop 4.2.
Let $A_R = \{w: |S_R(\omega)| \ge d$ and $|S_j(\omega)| \le d$ for $j \le k$, $k=1,2,\cdots$
Then A_R are disjoint.

Hence

$$E(S_{n}^{2}) \geq \sum_{k=1}^{n} \int_{A_{k}} S_{n}^{2} dp$$

$$= \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2} + 2S_{k} (S_{n}-S_{k}) + (S_{n}-S_{k})^{2} dp$$

$$\geq \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2} + 2S_{k} (S_{n}-S_{k}) dp$$
Since A_{k} and S_{k} are in $S(X_{1}, \dots, X_{k})$ and $S_{n}-S_{k}$ in $S(X_{k+1}, \dots, X_{n})$

$$\int_{A_{k}} 2S_{k} (S_{n}-S_{k}) dp = 2\int \mathbb{I}_{A_{k}} S_{k} (S_{n}-S_{k}) dp$$

$$= 2(\int \mathbb{I}_{A_{k}} S_{k} dp) (\int S_{n}-S_{k} dp)$$

$$= 0.$$

Hence

$$E(S_{n}^{2}) \geq \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2} dP$$

$$\geq d^{2} \sum_{k=1}^{n} P(A_{k})$$

$$= d^{2} \cdot P(\max_{j \leq k \leq n} |S_{k}| \geq d).$$

Prop 4.3. Let
$$X_{i_1}$$
, X_n be independent. Then for $d > 0$,
 $P(\max_{\substack{|s| > 3d}} \le 3 \max_{\substack{|s| > 3d}} p(|S_R| \ge d)$.

Pf. Let
$$B_R = \{ \omega : |S_R(\omega)| > 3d \text{ and } |S_j(\omega)| < 3d \text{ for } j < k \}$$

Then $B_{1, \dots, N} B_n$ are disjoint $\omega_i + h$ $\bigcup_{k=1}^{N} B_k = (\max_{1 \le k \le n} |S_k| > 3d)$.

$$P\left(\max_{j \leq k \leq n} |S_{k}| \geq 3d\right)$$

$$\leq P\left(|S_{n}| \geq d\right) + \sum_{k=1}^{n-1} P(B_{k} \cap \{|S_{n}| < d\})$$

$$\leq P\left(|S_{n}| \geq d\right) + \sum_{k=1}^{n-1} P\left(B_{k} \cap \{|S_{n} - S_{k}| \geq 2d\}\right)$$

$$= P\left(|S_{n}| \geq d\right) + \sum_{k=1}^{n-1} P\left(B_{k}\right) P\left(|S_{n} - S_{k}| \geq 2d\right)$$

$$\leq P\left(|S_{n}| \geq d\right) + \max_{k=1} P\left(|S_{n} - S_{k}| \geq 2d\right)$$

$$\leq P\left(|S_{n}| \geq d\right) + \max_{j \leq k \leq n-1} P\left(|S_{n} - S_{k}| \geq 2d\right)$$

$$\leq P\left(|S_{n}| \geq d\right) + \max_{j \leq k \leq n-1} \left(P\left(|S_{n}| \geq d\right) + P\left(|S_{k}| \geq d\right)\right)$$

$$\leq 3 \max_{j \leq k \leq n-1} P\left(|S_{k}| \geq d\right).$$
Now we are ready to prove
Thm 44. Suppose that X_{1}, X_{2}, \cdots , are independent with mean 0.

If
$$\sum_{n=1}^{\infty} Var(X_n) < \infty$$
, then $\sum_{n=1}^{\infty} X_n$ converges with prob.1

.

Pf. By Prop 4.2.

$$P\left(\begin{array}{c} \max_{\substack{k \leq r \\ j \leq k \leq r}} |S_{n+k} - S_n| > \varepsilon\right)$$

$$= \frac{1}{2^2} \sum_{\substack{k=1 \\ k = 1}}^r Var\left(S_{n+r} - S_n\right)$$

$$= \frac{1}{2^2} \sum_{\substack{k=1 \\ k = 1}}^r Var\left(X_{n+k}\right)$$

$$\leq \frac{1}{2^2} \sum_{\substack{k=1 \\ k = 1}}^r Var\left(X_{n+k}\right)$$
Letting $r \rightarrow \omega$ gives

$$P\left(\begin{array}{c} \sup_{\substack{k \geq 1 \\ n \neq \omega}} |S_{n+k} - S_n| > \varepsilon\right) \leq \frac{1}{2^2} \sum_{\substack{k=1 \\ k = 1}}^{\omega} Var\left(X_{n+k}\right)$$
Hence

$$\lim_{\substack{k \geq 1 \\ n \neq \omega}} P\left(\begin{array}{c} \sup_{\substack{k \geq 1 \\ k \geq 1}} |S_{n+k} - S_n| > \varepsilon\right) = 0.$$
 (*)
Let $E(n, \varepsilon)$ denote the set where $\sup_{\substack{k, j \geq n \\ k, j \geq n}} |S_k - S_j| > 2\varepsilon$
and $E(\varepsilon) = \bigcap_{\substack{n=1 \\ k \geq 1}}^{\infty} E(n, \varepsilon)$.
Then $E(n, \varepsilon) \lor E(\varepsilon)$.
Since $\left(\begin{array}{c} \sup_{\substack{k \geq 1 \\ k \geq 1}} |S_{n+k} - S_n| > \varepsilon\right) \supset E(n, \varepsilon) \supset E(\varepsilon)$,
by (*), $P(E(\varepsilon_1) = 0$.

Notice that
$$(S_n \text{ diverges}) = \bigcup_{\substack{x \in G_n \in G_n}} E(z)$$

So $P(S_n \text{ diverges}) = 0$. \square
Example 45 Consider the vandom series $\sum_{\substack{n=1 \\ n=1}}^{\infty} \pm \frac{1}{n}$, where
the signs are chosen on the toss of a coin. Then
the series converges with prob. 1.